If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+60x-1350=0
a = 1; b = 60; c = -1350;
Δ = b2-4ac
Δ = 602-4·1·(-1350)
Δ = 9000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9000}=\sqrt{900*10}=\sqrt{900}*\sqrt{10}=30\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-30\sqrt{10}}{2*1}=\frac{-60-30\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+30\sqrt{10}}{2*1}=\frac{-60+30\sqrt{10}}{2} $
| 20k+4=360 | | 3.4=-t/9.5 | | 2x-18=-2(12)+12 | | -14x-5=-8x-2 | | -28=-7(3x+4) | | -6x^2+44x-24=0 | | -4x^2-50=36 | | 2x+30+30+15+3x-25=180 | | 6x-36=6x | | -16=4v+8 | | -5x-8=4x-6 | | 3(q+4/3 )=2 | | x^2+9/x=0 | | k^2-6k+14=3 | | 2x+1=2/5 | | 9/10t-150=50 | | c^2-24=0 | | -24=5v-4 | | 5=x/1000000 | | (2x)(2x)(x)=180 | | f/7-20=-26 | | x/(2065.39+x)=4/100 | | 2x2−18x+36=0 | | g/4+13=27 | | 15*(2x+11)=285 | | 3r−7=2 | | 4+5v=-31 | | -6a=-9a-18 | | 3t+7t=-3” | | 3x^2-22x+12=0 | | 9+9q=54 | | x=1/4-3/5 |